PRISE EN MAIN d'un TABLEUR : EXCEL

Soient une intensité et une tension dont les variations en fonction du temps sont représentées par les équations : $i(t) = I_{max}.sin$ ωt et $u(t) = U_{max}.sin(\omega t + \varphi)$.

- Valeurs numériques :
 - fréquence F = 50 Hz
 - tension $U_{eff} = 230 V$
 - intensité I_{eff} = 0,5 A
 - déphasage φ= 60°

Dans <u>une période</u>, <u>calculer 100 valeurs instantanées</u> de l'intensité, de la tension, et de la puissance.

Calculer la <u>moyenne</u> des 100 valeurs de l'intensité dans la période, et vérifier qu'elle est nulle. De même pour la moyenne des 100 valeurs de la tension.

Calculer les <u>valeurs efficaces RMS</u> de l'intensité et de la tension à partir des 100 valeurs instantanées, et vérifier qu'elles correspondent aux valeurs numériques de l'énoncé.

 $Calculer \ la \ \underline{puissance \ movement} \ et \ verifier \ qu'elle \ est \ egale \ a \ la \ \underline{puissance \ active} \ donnée \ par \ la \ formule \ P = U_{eff}. I_{eff}. cos \varphi.$

Dessiner le <u>graphique</u> de l'intensité, de la tension et de la puissance en fonction du temps.

A l'aide d'un <u>curseur</u>, <u>faire varier progressivement</u> l'angle de déphasage φ et observer les effets.

<u>Afficher automatiquement</u> le type de circuit (résistif, inductif ou capacitif) d'après le signe du déphasage.

I) Présentation-Lancement

Lancement Démarrer → Programmes → Microsoft Excel

La page qui apparaît est un tableau appelé <i>feuille de calcul</i> .	Barre de formule	
La <i>cellule active</i> est entourée en gras et est repérée par n°	Enregistrer Edition Affichage Insertion Format Enregistrer	0
de ligne et nom de colonne.	Nom de la cellule	Г
Son nom est indiqué dans la case en haut à gauche, ce nom peut être modifié pour être utilisé dans une formule	Référence ^o des colonnes	
Pour <i>sélectionner plusieurs cellules</i> , cliquer, maintenir le	Zone sélectionnée	
bouton et déplacer (ou MAJ+ flèches déplacement). Un <i>enregistrement</i> régulier des travaux est conseillé	n° des lignes	
	Feuille de calcul	

II) Mise en forme des données

- Alignement
- Changement de Police

Exemple de saisie

:	Eichier	Edition	<u>A</u> ffichage	Insertion	Forma <u>t</u>	<u>O</u> utils	<u>D</u> onnées	Fe <u>n</u> être <u>?</u>	T.
:	📔 🔒	6	督 🛕	ABC 🔣	8 G	2 🎸	1) - (1	- 🕃 🧕 Σ	- <u>A</u> ↓ <u>A</u> ↓ <u>b</u>
Syr	mbol		- 10 -	G I	s 🍯		e 🛒 🤊	6 000 € % 🖇	0
	G1	-	<i>f</i> ∗ j						
	A	В	C	D	E	-F	G	Н	I
1	f =	50	Hz	Ieff =	0,5	A	φ=	60.00	degrés
2	T =		ms	Ueff =	230	V	φ=		rad
3									
4									

• Format de cellule :

- Scientifique :ex : 1,3E+3
- Personnalisée : pour qu'une donnée soit toujours prise comme un nombre mais où apparaîtra l'unité choisie
 - #: N'affiche que les chiffres significatifs et non les zéros non significatifs.
 - 0 : Affiche les zéros non significatifs

III) Les calculs

III.1) Syntaxe

On veut afficher dans B2 la période en millisecondes : sa valeur est 1000 fois plus grande qu'en secondes donc T en ms = 1000/F avec F en Hz.

Le signe = indique au tableur une formule qu'il doit calculer.

	Formule de la cellule B2					F	ormule d	e la cellule H	12
T	т В2 🔻		f(=	1000/B1	H2	-	f.	H1*PI(/180	
~	A	В	С	D	A	В	С	D	Н
1	f =	50	Hz	Ieff:	f=	50	Hz	Ieff =	60.00 degrés
2	T = 🤇	20	D ms	Ueff	T =	20	ms	Ueff =	1.05

Résultat

Résultat

<u>IV) Calcul répétitif</u>

IV.1) Série de données

Le remplissage d'une série de cellules d'un tableau peut se faire de différentes façons

<u>Méthode 1</u>

Entrer dans les 2 premières cellules contigües les deux premières valeurs de la série : par exemple : 0,2,4

Sélectionner ces deux cellules puis placer le curseur dans le coin en bas à droite de ces deux cellules qui apparaît comme une croix, cliquer, maintenir appuyé et faire glisser cette croix jusqu'aux valeurs désirées.

6	ms	
7	0	
8	2	
9	4	
10	6	
11	8	
12	10	
13		P

<u>IV.2) Calculs redondants</u> <u>IV.2.1) Adresse relative</u> <u>Méthode 2</u>

Rentrer dans une cellule la valeur de départ. Sélectionner les cellules où la série devra se trouver, incluant cette première valeur.

Puis	Edition \rightarrow	Recopier ou F	Remplissage → Série
	Série de donnée	25	
	Série en ○ Lignes ⓒ Colonnes	Type Linéaire Géométrique Chronologique Recopie incrémen	tée
	<u>V</u> aleur du pas :	1	Dernière valeur :
			OK Annuler

Valeur du pas : par ex 0,2

Dernière valeur : 6

Donnera la première valeur puis les autres augmentées de 0,2 jusqu'à un max de 6

A7 est une adresse relative (ou cellule courante)

On a écrit cette adresse A7 dans un calcul de la cellule B7, cela indique au tableur qu'il doit aller chercher le contenu de la cellule qui se trouve dans la colonne voisine à sa gauche (colonne A par rapport à colonne B), sur la même ligne (le même n° 7) :

- quand la cellule active est B7, le tableur va chercher le contenu de la cellule A7,
- quand la cellule active est B8, le tableur va chercher le contenu de la cellule A8,

- etc.

Exemple : calcul de valeur efficace :

Pour calculer la valeur efficace d'un signal dont les valeurs sont espacées régulièrement et dont on possède un nombre entier de période.

Il suffit de revenir à la définition de la valeur efficace : $\sqrt{\langle x^2(t) \rangle}$

Sur l'exemple ci-dessous à chaque valeur temporelle (20 valeurs découpent une période de 6,28 rad) correspond x(t)=sin(t) et $x^{2}(t)$

	A	В	С	D	Н		J
4							
5	t(s)	x(t)	ײ(t)	=SIN(A7)			
6	0	0	0				
7	0.314	0.3089	0.0954	-SIN(A0)			
8	0.628	0.5875	0.3452	=B9*B9 =MC	YENNE(06:025)	
9	0.942	0.8087	0.6541	=B10*B10			
10	1.256	0.9509	0.9041	010 010		=RACIN	IE(H12)
11	1.57	1	1			/	
12	1.884	0.9514	0.9051	valeur moyenne du carré	0.500 🧹		
13	2.198	0.8097	0.6556	racine de la moyenne du carré	0.707		
14	2.512	0.5888	0.3467			=1/RAC	INE(2)
15	2.826	0.3104	0.0963	valeur théorique	0.707 🗖		
16	3.14	0.0016	3E-06				
17	3.454	-0.3074	0.0945				
18	3.768	-0.5862	0.3437				
19	4.082	-0.8078	0.6525				
20	4.396	-0.9504	0.9032				
21	4.71	-1	1				
22	5.024	-0.9518	0.906				
23	5.338	-0.8106	0.6571				
24	5.652	-0.5901	0.3482				
25	5.966	-0.3119	0.0973				
26	6.28	-0.0032	1E-05				
27							

IV.2.2) Adresse absolue

\$B\$1 est une adresse absolue (ou cellule figée)

Quand le tableur rencontre cette adresse, quelle que soit la cellule active, il va chercher le contenu de la cellule B1 et uniquement de celle-là.

Exemple :

L'exemple précédent est modifié par une insertion de colonne (on peut s'apercevoir que les références aux colonnes de nos calculs ont changé ce qui est rassurant). Cette colonne indiquera le numéro de l'échantillon calculé.

On souhaite pouvoir faire varier la valeur de la fréquence de notre signal : La case C4 lui est dévolue

- les 20 valeurs temporelles découpant une période sont calculées ainsi :
 n° échantillon*(période/20) et comme 1/T=f=*\$C\$4 ceci qui se traduit par =A6/(20*\$C\$4)
- les 20 valeurs temporelles découpant une période sont calculées ainsi :

	Cellule C5 renommée en « f »									
		<u>v</u>								
	f	\rightarrow \cdot	fx5I	0				_		-
	Α	B↓	∖ C	D		E			J	K
4		fréquence	50	Hz		=A6/(20*\$0	\$4)			
5		t(s)	x(t)	x²(t)		=SIN(2*PIC)*B7*f)			
6	0	0.E+00	0.E+00	0.E+00			*00*0	-		
7	1	1.E-03	3.1E-01	9.55E-02		HOIN(Z PI)	001)			
8	2	2.E-03	5.9E-01	3.45E-01		=C9*C9	=	MOYENN	E(D6:D25)	
9	3	3.E-03	8.1E-01	6.55E-01		=010*010				
10	4	4.E-03	9.5E-01	9.05E- 61		010 010			=RACIN	JE(I12)
11	5	5.E-03	1.E+00	1.E+00						
12	6	6.E-03	9.5E-01	9.05E-01	valeur	moyenne di	l carré	0.500	1	
13	7	7.E-03	8.1E-01	6.55E-01	racine	de la moye	enne du car	ré 0.707	·	
14	8	8.E-03	5.9E-01	3.45E-01					 =1/RAC	INE(2)
15	9	9.E-03	3.1E-01	9.55E-02		valeur théo	prique	0.707		
16	10	1.E-02	-3.2E-16	1.03E-31						
17	11	1.1E-02	-3.1E-01	9.55E-02						
18	12	1.2E-02	-5.9E-01	3.45E-01						
19	13	1.3E-02	-8.1E-01	6.55E-01						
20	14	1.4E-02	-9.5E-01	9.05E-01						
21	15	1.5E-02	-1.E+00	1.E+00						
22	16	1.6E-02	-9.5E-01	9.05E-01						
23	17	1.7E-02	-8.1E-01	6.55E-01						
24	18	1.8E-02	-5.9E-01	3.45E-01						
25	19	1.9E-02	-3.1E-01	9.55E-02						
26	20	2.E-02	6.4E-16	4.14E-31						
27										

V) Fonctions math et trigo : Insertion \rightarrow Fonction

<u>V.1) Valeurs moyennes</u>

Fonction = MOYENNE(C7:C106)

La moyenne sera effectuée sur l'ensemble des cellules de C7 à C106

V.2) Fonctions complexes

De nombreuses opérations sur les complexes sont possibles dans les fonctions scientifiques

V.3) Fonctions texte

Fonction texte =T(valeur)

Cette fonction donne le texte auquel valeur fait référence.

Si *valeur* est l'adresse d'une cellule, la fonction donne le texte contenu dans cette cellule. *Premier exemple :*

La cellule A1 contient le texte "Bonjour".

On peut le recopier dans une cellule quelconque en y entrant la formule =T(A1).

Deuxième exemple :

La fonction T(valeur) peut être intégrée dans une fonction logique.

On veut que la cellule D1 affiche 0 si le contenu de la cellule A1 est égal à 0, et qu'elle affiche différent de 0 dans le cas contraire.

Il suffit d'écrire différent de 0 dans B1, et d'entrer dans D1 la formule =si(A1=0;0;T(B1))

V.4) Fonctions logique

Fonction logique =si(test;valeur si vrai;valeur si faux)

Il est possible d'afficher automatiquement le type de circuit (capacitif, résistif, inductif) d'après le signe du déphasage.

Dans H6 écrire inductif, dans H7 résistant, dans H8 capacitif

Puis dans une cellule, écrire la formule =si(H1>0;T(H6);si(H1=0;T(H7);T(H8)))

Premier exemple :

Dans une cellule quelconque on veut qu'il y ait 1 si le contenu de la cellule A1 est supérieur à 1000 et qu'il y ait 0 dans le cas contraire.

Dans cette cellule, il faut entrer la formule =si(A1>1000;1;0)

On peut désigner la cellule par son adresse absolue, ce qui donne = si(\$A\$1>1000;1;0) cette remarque étant aussi valable pour tous les exemples suivants.

Deuxième exemple :un test peut en cacher un autre

Dans une cellule quelconque on veut qu'il y ait 5 si le contenu de la cellule A1 est positif, qu'il y ait -5 si le contenu de A1 est négatif, et qu'il y ait 0 si le contenu de A1 est nul.

Dans cette cellule, il faut entrer la formule =si(A1>0;5;si(A1<0;-5;0))

Analyser la formule en prenant bien le temps de décortiquer les points virgules...

Désactiver le mode création.

Agir sur la position du curseur et vérifier que le nombre variable s'affiche dans la cellule A1.

	A	
1	51	
2		
3		
4		
5		
6		•

VII) Suggestions de présentation

VII. 1) Supprimer les en-têtes des lignes et des colonnes

Quand tout est fini, on peut souhaiter afficher seulement le tableau : Outils → Options → Affichage → décocher "En-têtes de lignes et de colonnes" et, éventuellement "Onglet du classeur", "Barre de défilement horizontale", etc... Pour agrandir l'affichage au maximum : Affichage → Plein écran.

Excel & VBA

1		Séle	ction	15	7
2		Synt	taxe .		7
3		Man	nipula	ation de cellules et tableaux	8
4		Le p	rogra	ammeur manipule des Objets hiérarchisés (ou des collections d'obje	ets) :9
5		Prop	oriété	és , Méthodes et Événements d'un Objet	9
	5.1	L	Les	propriétés	9
	5.2	2	Les	méthodes	9
	5.3	3	Les	événements	9
		5.3.2	1	MsgBox	9
6		Les v	varial	bles	9
	6.1	L	Déc	laration des variables	
	6.2	2	Les	types de variables	
7		Les	struc	tures de programmation	
	7.1	L	Les	Tests	
	7.2	2	Les	Boucles	
	7.3	3	Les	Procédures	
	7.4	1	Les	Fonctions	
		7.4.:	1	Function	
		7.4.2	2	InputBoxErreu	r ! Signet non défini.

Sélections et raccourcis

Dans Excel CTRL+* : sélection du tableau CTRL+Fin Fin Selection.CurrentRegion.Select

Dans VBA

F2 : F8 : pas à pas détaillé Possibilité de rajouter un espion express (débogage)

<u>Syntaxe</u>

:	Pour écrire plusieurs actions sur une même ligne	For i = 1 To 100 : MAVAR(i) = i : Next i
Ι	action particulièrement longue sur plusieurs lignes	TTC = ActiveCell Value * 1.206
&	Concaténation	« total »&Cells(20,4)
'	commentaire	

Lecture de cellules et tableaux

<u>Cibler une cellule</u>

Sheets("Feuil1").Select	
Range("C3").Select	
Cells(2,3).Select	intersection de la ligne 2 et de la colonne 3 attention à la
	virgule !
Application.GoTo ("Compteur")	on peut utiliser les noms de cellules
ou	
Range("Compteur").Select	
ActiveCell.Offset(nblignes,	Pour déplacer le pointeur « en relatif », par rapport à la
nbcol).Select	position actuelle
Selection.End(xlToRight).Select	xlToLeft, xlToRight, xlUp, xlDown

Extraire la valeur affichée

Cells(1,2).Value = "1"	Renvoi 1 dans la cellule ligne 1, colonne2
Range(« Feuil1 !A1 :B4 »)	
Range(« compteur »)	Renvoi l contenu de la cellule s'appelant compteur

Extraire le vrai contenu de la cellule

Range(« B4 »).value	Renvoie la valeur même si alpha
Range(« B4 »).Text	Renvoie la valeur même si numérique
Range(« B4 »).Formula	Renvoi la formule : « =A6*0,5 »
Range(« B4 »).FormulaR1C1	Renvoi la formule : « =R[2]C[-1]*0,5 »
	+2 lignes et -1colonne par rapport à B4

<u>Extraire son adresse</u>

ActiveCell.address()	Renvoie \$B\$4
Range(« B4 »).Row	Renvoie 4
Range(« B4 »).Column	Renvoie 2 (B= 2 ^{ème} colonne)
Range("FIN_TABLEAU").Offset(-1,	FIN_TABLEAU = AP119
2).Address()	-1 ligne et +2 colonnes
	Donc renvoie \$AR\$118

<u>Extraire le format</u>

ActiveCell.NumberFormat	Renvoie ##0,00
Cibler up tableau	

<u>Cibler un tableau</u>

Range(DEB, FIN).Select	Si DEB contient A12 et FIN : C124, on selectionnera
	A12 :C124

<u>Affectation</u>

D'une valeur à une variable

VARIABLE = EXPRESSION

VARIABLE =	0.206	
	"Dupont"	
	Range(« B4 »)	
		Formule

Représente une cellule, une ligne, une colonne ou une sélection de cellules contenant un ou plusieurs blocs contigus de cellules ou une plage 3D.

L'application Excel est de même un objet contenant tous les autres : classeurs (Workbook) , feuilles (Worksheet)... ,

Propriétés, Méthodes et Événements d'un Objet

Les propriétés

Syntaxe pour accéder à une propriété (lecture ou écriture) d'un objet : ObjetParent.ObjetEnfant.Propriété(.SousPropriété)

Exemple : écrire en gras la cellule B5 de la feuille 'Feuil1' (sans la sélectionner) Worksheets("Feuil1").Range("B5").Font.Bold = True

Les objets parents Application et Workbook sont implicites

ObjetParent	ObjetEnfant	Propriété(.SousPropriété)	méthode
	Range("B5").	Value	Clear
		Formula	Select
		Address	Add
		Count	Remove
			Delete
			Item

Range("B5").Formula = "=\$A\$4+\$A\$10"

Les méthodes

Exemple : activer (et rendre visible) la feuille 'Feuil1' puis sélectionner la plage de cellules A1..C3 Worksheets("Feuil1").Activate

Range("A1:C3").Select

Les événements

Exemple : lors de l'activation d'une feuille afficher le nom de la feuille dans une fenêtre message Private Sub Workbook_SheetActivate(ByVal Sh As Object)

MsgBox Sh.Name End Sub

Pour s'y retrouver : savoir utiliser l'explorateur d'objets (dans VBA) : 🏙

<u>MsgBox</u>

Donne une boite de dialogue affichant la solution est valeur ligne 12, col 1 MsgBox "La solution est" & Cells(12, 1).Value Donne une boite de dialogue affichant la solution est valeur ligne 12, col 1 avec retour à la ligne MsgBox "La solution est"& vbCr & Cells(12, 1).Value

<u>Les variables</u> Mettre les variables en majuscules

Déclaration des variables

- Pour rendre obligatoire la déclaration de variable avant même l'instruction Sub, on prévoit la ligne
 - **Option Explicit**

Dim VARIABLE As type en tête de procédure

• Pour rendre la variable publique : à mettre en tête de module Public NOM_VARIABLE As String

<u>Les types de variables</u>

Type d'une variable :

Type de donnée	Taille d'un enregistrement	Plage
Boolean	2 octets	Vrai ou Faux.
Integer	2 octets	-32 768 à 32 767.
Long (entier long)	4 octets	-2 147 483 648 à 2 147 483 647.
Single (valeur à virgule flottante en simple précision)	4 octets	-3,402823 E38 à -1,401298 E-45 pour les valeurs négatives; 1,401298 E-45 à 3,402823 E38 pour les valeurs positives.
Double (valeur à virgule flottante en double précision)	8 octets	-1,79769313486232 E308 à -4,94065645841247 E-324 pour les valeurs <0; 4,94065645841247 E-324 à 1,79769313486232 E308 pour les valeurs >0.
Currency (monétaire)	8 octets	-922 337 203 685 477,5808 à 922 337 203 685 477,5807.
Date	8 octets	1er janvier 100 au 31 décembre 9999.
Object	4 octets	Toute référence à des données de type Objet.
String	1 octet	0 à environ 2 milliards
Decimal	14 octets	 +/-79 228 162 514 264 337 593 543 950 335 sans séparateur décimal ; +/-7,9228162514264337593543950335 avec 28 chiffres à droite du séparateur décimal ; le plus petit nombre différent de zéro est +/-0.00000000000000000000000000000000000
Variant	16 octets + 1 octet pour chaque car.	N'importe quelle valeur numérique dans la plage d'une valeur de type Double ou n'importe quel texte de caractères (de 0 à environ 2 milliards de car.).
Défini par l'utilisateur (à l'aide de l'instruction <i>Type</i>)	Nombre d'octets requis par les éléments	La plage de chaque élément est identique à la plage de son type de donnée.

basic le type d'une variable n'est pas nécessairement déclaré (mais il vaut mieux pour s'y retrouver) Tableaux indexés : Array()

Portée d'une variable : Public , Private

Certaines variables sont regroupées en tableau : elles ont alors toutes le même nom et elles se distinguent par un indice (nombre entre parenthèses).

Par exemple, on peut prévoir un tableau ANNÉE(4) (nombre maximum de variables = 4) pour mémoriser les 4 années d'un plan-épargne-logement.

Les structures de programmation

<u>Les Tests</u> If .. Then .. Else , Select Case ,

<u>Les Boucles</u> For .. Next , For Each .. Next , While .. Wend

Les Procédures

Sub .. End Sub

Les Fonctions

<u>Function</u>	
Function End Function	
Function succes(note As Integer) As String	
If note < 8 Then	
succes = "Recalé"	

Elself note < 10 Then succes = "2ème groupe"	
Else succes = "Admis" End If	
End Function	