Structure série

\( {X_e} = {K_p}\left[ {\varepsilon \left( {1 + \frac{{{T_d}}}{{{T_i}}}} \right) + \frac{1}{{{T_i}}}\int\limits_0^t {\varepsilon (t)dt} + {T_d}\frac{{d\varepsilon (t)}}{{dt}}} \right] + \frac{{{K_p}}}{{{T_i}}}\int\limits_{ - \infty }^0 {\varepsilon (t)dt} \)

\( C(p) = \frac{{{X_e}(p)}}{{\varepsilon (p)}} = {K_p}\left( {1 + \frac{1}{{{T_i}p}}} \right)\left( {1 + {T_d}p} \right) \)

Structure parallèle

\( {X_e} = {K_p}\varepsilon + \frac{1}{{{T_i}}}\int\limits_0^t {\varepsilon (t)dt} + {T_d}\frac{{d\varepsilon (t)}}{{dt}} + \frac{1}{{{T_i}}}\int\limits_{ - \infty }^0 {\varepsilon (t)dt} \)

\(C(p) = \frac{{{X_e}(p)}}{{\varepsilon (p)}} = {K_p} + {T_d}p + \frac{1}{{{T_i}p}} \)

Structure mixte

\( {X_e} = {K_p}\left[ {\varepsilon + \frac{1}{{{T_i}}}\int\limits_0^t {\varepsilon (t)dt} + {T_d}\frac{{d\varepsilon (t)}}{{dt}}} \right] + \frac{{{K_p}}}{{{T_i}}}\int\limits_{ - \infty }^0 {\varepsilon (t)dt} \)

\( C(p) = \frac{{{X_e}(p)}}{{\varepsilon (p)}} = {K_p}\left[ {1 + {T_d}p + \frac{1}{{{T_i}p}}} \right] \)


Lycée Jean Monnet

1, place De Lattre de Tassigny
Vétraz-Monthoux BP241
74106 ANNEMASSE Cedex
mail
Téléphone : +33 (0)4.50.87.18.36


Pronote

RSS du site flux RSS des Sciences Appliquées